
arista.com

White Paper

EOS: The Next Generation Extensible
Operating System
Performance, resiliency and programmability across the entire network are now fundamental business

requirements for next generation cloud and enterprise data center networks. The need for agility and deployment

at scale with regards to provisioning and network operations requires a new level of automation and integration

with current data center infrastructure. The underlying design of the network operating system provides the

architectural foundation to meet these requirements.

Arista Networks has designed and delivered EOS (Extensible Operating System), the industry-leading, Linux-

based network operating system, to address these requirements. EOS is a robust, programmable and innovative

operating system, featuring a single software image that runs across the entire portfolio of Arista’s award-winning

network switches as well as in a virtual machine instance (vEOS). This guarantees consistent operations, workflow

automation and high availability, while significantly reducing data center operational expenses.

This whitepaper discusses current network operating systems and explains how Arista’s EOS architecture uniquely

support next generation data centers.

arista.comarista.com

White Paper

Limitations of Legacy Network Operating Systems
Traditional enterprise data center networks have long been
susceptible to software crashes and unplanned outages.
Multiple, different software releases across switch platforms
made deploying new features and services a lengthy and
time-consuming process. Combined with error-prone manual
configuration, inevitably network uptime was compromised.

At the core of this problem was the aging monolithic software
that still runs on most of today’s networking equipment.
This presents a fundamental limitation to very high network
reliability. The reality is that a single bug or defect anywhere
in these shared-memory systems exposes the entire network
to disruption, since there is no mechanism for software fault
containment. At the same time, with no isolation between
multiple tasks, it is difficult to scale these operating systems from
a performance perspective or to reliably add new functionality.
The fragile nature of this legacy software inherently prevents
the extension of the network operating system to implement
new capabilities such as integration with customer specific
management processes or other systems and services deployed
in modern data center environments.

Earlier network operating systems were incrementally built
on top of customized kernels with state information arbitrarily
distributed throughout the system or worse still, embedded into
the kernel itself. In these environments all processes typically run
in a common address space, which results in risky fate sharing
– a single defect could crash the whole system and result in a
severe network outage. The software state is maintained using
synchronous or asynchronous polling, an inefficient mechanism
that typically checks state every few milliseconds or seconds on
every interface and internal data structure, resulting in wasted
cycles, possible deadlocks and race conditions with multiple
concurrent events.

Any changes in state are handled by fragile, carefully crafted
code-paths so that software processes react in

a tightly ordered sequence depending on the underlying event.
Testing all possible code-paths in such architectures results in
complexity, long development and extended customer test and
qualification cycles.

Additionally, the software functionality is layered with matrixed
messaging occurring between processes, resulting in a maze of
inter process communications and system complexity, as shown
in the simplified Figure [1]:

Finally, the internal state cannot be exposed to users and
applications and the only programmability that is possible in
these stacks is via high-level API wrappers, which may provide
the same information as SNMP or the CLI in text or XML formats
for monitoring purposes.

Building cloud networks and software-defined data centers is
impossible with such sub-optimal software architectures.

Arista EOS: The Modern Solution
In order to address the needs of public/private/hybrid cloud
networks, while enabling new applications and ushering in
the era of Software Defined Networks (SDN), Arista’s Extensible
Operating System (EOS) has been designed from the ground-
up and is optimized for these demanding new data center
environments.

Arista’s Extensible Operating System is the industry’s most
advanced network operating system. It combines modern-day
software and operating system (O/S) concepts, transparently
restartable processes, open platform development, an un-
modified Linux kernel, and a stateful publish/subscribe database
model.

In order to fully understand the benefits a true and open
operating system provides and explore the potential of a
comprehensive automation solution, a detailed review of the
underlying architecture of EOS is required. In the following
sections we will examine the key components and attributes
of EOS architecture as well as the rich array of network services
built on top of EOS.

Figure 1: Legacy Network Operating Systems Communications
(circa 2000-2010)

arista.comarista.com

White Paper

Arista EOS: Use of Linux Kernel
At the underpinnings of Arista EOS is an unmodified Linux
kernel. The main advantages of using a Linux kernel are:

• It resides in the public domain

• Hundreds of contributors, and millions of users contribute
to its stability, capabilities and feature set

• It is extremely stable and modular in nature

• Availability of packages, application repositories and access
to the source code

• Linux is pervasively used and therefore very widely
accepted across many different systems and environments

Arista EOS: SYSDB
Separating functional control of the system into multiple
processes greatly enhances resiliency and fault isolation, but
requires a mechanism for coordinating actions within the
system. This is the role of Sysdb.

As figure 2 shows, at the core of EOS is the system database.
Sysdb is an in-memory database (machine generated at run
time), which runs in user space and contains the complete state
of the system. Like traditional databases, Sysdb does not contain
any application logic and is only responsible for keeping state.
However rather than being optimized for transactions, Sysdb is
designed for synchronizing state among processes, also called
‘agents’, by notifying interested processes or agents when there
is a change.

All agents in the system mount their configuration and status
from Sysdb. This is very much like a file-system mount where
read-only or read-write permissions are specified for each
mount point. When an agent mounts from Sysdb, it receives its
own local copy of all of the state in that mount point. As Sysdb
is maintained in RAM, once the switch is turned off or restarted,
information is lost.

Sysdb is like an event-driven publish/subscribe model. If the
state of an agent changes, Sysdb will send an event notification
to that agent, which will then update its local copy. Similarly
when the agent writes to the mount point, it only changes its
local copy and the write returns immediately.

Each EOS agent subscribes to Sysdb to be notified when the
states of other agents change in Sysdb. When the state of an
agent has been changed, this change notification is buffered
and asynchronously sent to Sysdb, which then notifies all other
agents who have subscribed to the changed agent.

This centralized database approach to passing state throughout
the system, and the automated way the Sysdb code is generated
reduces risk and error, improves software feature velocity, and
provides flexibility for customers who can use the same APIs to
receive notifications from Sysdb to customize and extend switch
features.

Arista EOS: Key Advantages
EOS provides extremely robust and reliable data center
communication services while preserving the Linux heritage of
security, stability, openness, modularity, and extensibility. This
combination is unique in the industry and offers the opportunity
to significantly advance the functionality and evolution of next
generation data center networks.

• Arista EOS is a unique multi-process state sharing
architecture that separates state information from the
processes itself. This reflects Arista’s core software design
philosophy and enables fault recovery and real- time
software updates on a process-level basis without affecting
the running state of the system.

• In addition, protocol processing, security functions,
management services, and even device drivers run in
user address space, not in the kernel itself. This greatly
increases overall stability, and by maintaining the design
discipline of keeping the Linux environment pure, Arista is
able to easily extend the operating system with additional
functionality.

Figure 2: Arista EOS Architecture

arista.comarista.com

White Paper

• The same binary image of EOS can be deployed across any family of products. This improves the testing depth on each platform
and keeps features and bug resolution compatibility across all platforms. It also makes it much simpler for users to deploy,
certify and validate new releases in their data center environment.

• Most importantly, by providing users unrestricted access to the Linux shell, users can now start to leverage true data center
automation features. Users are able to gain access to write Shell or Python scripts to start to leverage the network in a similar
fashion other parts of the IT organization.

• Security, EOS supports authentication mechanisms such as TACACS+ and RADIUS AAA features, which allows any enterprise to
fully lock down any switch for authorized & secure access.

• EOS provides a development framework, which enables the core concept of extensibility. An open foundation, and best-in-class
software development models deliver feature velocity, improved uptime, easier maintenance, and a choice in tools and options.

Arista EOS: Resiliency
This section details how the EOS multi-process state-sharing architecture results in higher availability, reduced maintenance
windows, improved manageability, and tighter security.

The key to high system availability is fault containment and software self-healing. On most embedded platforms, any software fault
results in a reload, resulting in seconds or even minutes of downtime. Under EOS, any fault is contained within the agent or driver
where the fault originated. If the fault causes the agent to crash, then the EOS process manager (ProcMgr) restarts it immediately. If
the fault causes the agent to hang or loop, ProcMgr detects the condition and restarts the agent. Thus, faults within EOS are self-
healing. This process is shown in Figure [3] below.

Figure 3: EOS Fault Containment and Self-Healing

arista.comarista.com

White Paper

The EOS multi-process state-sharing architecture is also the key to reducing maintenance windows by allowing more maintenance
tasks to be performed during normal switch operation. Any EOS agent can be patched live and can be restarted without disrupting
switch operation. Data flow is unaffected by the module upgrade process, so there is no user-perceptible downtime.

The key to improved operations is the capability to support third-party management and orchestration integration and task
automation software. Because EOS provides a robust, protected environment for subsystems and agents, it is safe to run validated
third-party agents as well, tailoring switch behavior to optimize manageability or automating common tasks within a specific
customer environment. Therefore Arista EOS customers can deploy with confidence knowing that their network operating system
will protect against any third party software problems.

The key to improved security is containing the impact of a security vulnerability within the vulnerable agent. For example, if the
SNMP subsystem has a vulnerability, then the exploit may read all SNMP-accessible state; however, the exploit will not be able to
create additional user accounts, reconfigure interfaces, or run external software. In other words, just as the EOS architecture contains
faults to a single module, it also contains the impact of security vulnerabilities. Finally, through the same extensibility mechanisms
that improve management and orchestration support, third-party software may implement custom security policies or intrusion
detection to further enhance security.

Arista EOS: Programmability and Extensibility
EOS is programmable across all layers – Linux kernel, hardware forwarding tables, switch configuration and CLI, switch control plane
as well as management layer. This programmability of EOS enables rapid integration with a wide range of third-party applications for
virtualization, management, automation, orchestration and network services. Arista EOS offers a rich set of programmable interfaces
including:

• Linux shell access and APIs

• OpenFlow, DirectFlow

• Sysdb APIs

• Python, Perl scripting, Advanced Event Management (AEM)

• EOS SDK

• JSON based eAPIs, CLI, SNMP , XMPP

Arista EOS has full Linux shell access for root-level administrators and makes a broad suite of Linux based tools available. OpenFlow
and DirectFlow allow customers to program the forwarding state of the switch in order to fine- tune packet forwarding based on
application needs. Sysdb APIs provide access to all internal state, including low- level counters, temperature measurements, power
supply status and all other parameters necessary to monitor and manage the system natively. JSON-based EOS APIs (eAPI) provide
easy web-based integration with tools that are commonly used to manage compute and storage resources as well as orchestration
systems. Even the CLI written in Python is customizable. Scripts based on Python, Perl, etc., can also be developed as third party or
native integration with virtual and physical applications, SDN-type controller platforms and Layer 4-7 services.

With EOS Software Development Kit (SDK), customers can develop their own customized EOS applications in C++ or Python. This
EOS development model allows these third party applications to be first-class citizens of EOS along with other EOS agents. The SDK
provides programming language bindings to software abstractions available in Arista EOS, so third party agents can access switch
state and react to network events. These applications can, for example, manage interfaces, IP and MPLS routes, Access Control Lists
(ACLs), as well as use a range of APIs to communicate between the switch and monitoring or network controllers. The SDK targets
both long-running processes requiring event-driven notifications and scripts requiring high-performance interactions with other
EOS agents. The state separation through Sysdb and the inherent fault isolation enabled by the modular architecture is what enables
customers to develop and install their own applications without fear of disrupting the entire system.

arista.comarista.com

White Paper

This rich programmability can be leveraged by customers to
build customized applications, integrate with ecosystem tools
or even address feature gaps with a quick turnaround time that
truly makes EOS the right network OS for modern, agile, Cloud
Data Centers.

Arista EOS: Network Services
On top of the industry-leading foundation of EOS, Arista has
added a comprehensive suite of network services including
rich Layer2/Layer3 functionality, network virtualization support,
network visibility and telemetry, automation, SDN Controller
integration. All these services capitalize on the rich extensibility
that EOS offers to integrate with third party tools and take a
pragmatic, network-wide approach at addressing some of the
customer pain points. E.g. ZTP helps automate and templatize
the provisioning for large number of switches, Smart System
Upgrade (SSU) helps perform non-disruptive software upgrades,
CloudVision enables network wide integration with SDN
controllers using OVSDB, eAPI or OpenFlow.

Arista EOS: Smart System Upgrade
One example of a network service is Smart System Upgrade
(SSU). SSU delivers graceful software upgrades for the network.
The ability to perform non-disruptive system software upgrades
to introduce new network services or bug fixes is critical to
maintaining the availability levels that data center environments
demand.

Earlier network operating systems typically followed a telco-like
model of in-service software upgrades (ISSU), where a single
platform in production would at best be able to cut over to
an incrementally higher version of code, perhaps containing
a few new features or fixes. The traditional ISSU approach
has historically been burdened by the significant amount of
complex software development required. Special ISSU code had
to be written to account for all possible checks and balances
while the system attempts to maintain and convert all hardware
and software state as it jumps between two different versions
of software. This challenge is increased as the feature-set
increases, features interact with each other, and the associated
state information grows. The side effect of this complexity is that
corner cases are common and it is not possible to address all
scenarios. Even additional testing cycles, which further add an
‘ISSU tax’ to the release timeline, are not guaranteed to catch all
cases

Leveraging the superior architecture of an open, programmable

EOS and direct integration with other applications and
infrastructure components, SSU takes a more holistic network
perspective to software maintenance by allowing a network
element to be transparently removed or added while traffic is
either diverted or impact is altogether avoided. Designed to be
a complete solution for data center infrastructure maintenance,
Arista’s SSU provides the following key benefits:

• Intelligent insertion and removal of network elements,
customized to the spine role or the leaf role

• Programmatic upgrade to new software releases without
causing systemic outages

• Open integration with all application and infrastructure
elements

• Simplified solution: Intentionally avoids the complexity
of heavy state maintenance and state conversion process
needed with other approaches

Therefore Arista’s provisioning model allows for an initial
deployment or replacement of switches via Zero Touch
Provisioning (ZTP) or Zero Touch Replacement (ZTR), after
which the SSU framework ensures continuous operation by
supporting seamless upgrades either at the Leaf or Spine layer
as appropriate.

Arista vEOS: EOS as a Virtual Machine
Arista vEOS extends the EOS software platform running on
the physical switches to a virtual machine-based offering.
vEOS inherits all the EOS architecture attributes and benefits
discussed in this paper. vEOS is an actual EOS image, not a
simulator.

Figure 4: vEOS

arista.comarista.com

White Paper

vEOS can be used to build virtual network topologies and validate new EOS features and functionality. Customers leveraging the
rich programmable interfaces of EOS can use vEOS for development and testing of their scripts or applications without the need
for physical switches. vEOS also makes it easy for a wide array of Arista partners to access EOS to design, build and test extensions
that enable best-of-breed integrations for our customers. vEOS is also an effective training tool – the simplicity and flexibility of
a VM-based image provides an easy approach to familiarize with EOS and learn various EOS features, tools and troubleshooting
techniques.

EOS Architecture Summary
Event-driven Architecture: All state-changes trigger a notification through Sysdb to all processes registered for that event. This allows
the system to operate under intense load with great efficiency and higher resiliency.

Granular Modularity & Self-Healing Resiliency: EOS provides software fault containment and stateful fault repair of individual modules
for superior system stability. EOS also allows in-service software upgrades of individual modules without any impact to application
traffic.

Rich Network Features: EOS consists of rich, industry-leading Layer 2, Layer 3, Quality of Service (QoS), Access Control List (ACL),
manageability, security and virtualization features.

Programmatic across all layers: EOS is programmable across all layers – Linux kernel, hardware forwarding tables, switch
configuration and CLI, switch control plane as well as management layer for automation or network monitoring or integration with
third party tools and orchestration systems. A wide range of programmatic interfaces from eAPI to Linux APIs or OpenFlow and
DirectFlow to EOS SDK that interface with the system state can be utilized to develop custom applications, interface with third party
tools or management systems or even influence switch forwarding behavior.

Extensibility: The state separation through Sysdb allows users to run their own applications directly on the Arista portfolio for native
integration with Linux, and in-house tools, scripts and applications. Scripts based on Python, Perl, etc., can be developed as third
party or native integration with virtual and physical applications, SDN-type Controller platforms and Layer 4-7 services.

Smart System Upgrade: The Smart Systems Upgrade (SSU) application within EOS allows for graceful insertion and removal of
switches from a network, for a zero-downtime upgrade of the network by taking advantage of network-redundancy and integration
with advanced ECMP and MLAG topologies.

Network Visibility: Tracer and monitoring capabilities for Big Data/Hadoop (MapReduce Tracer), Virtualization (VM Tracer), Network
Path (Path Tracer), Latency Analysis (LANZ) and overall system health monitoring.

Network Telemetry: Network TAP Aggregation and Data Analysis (DANZ) allow for traffic mirroring and monitoring of the network
without any impact to user-traffic. Integration with Splunk, sFlow-based collectors, and application monitoring tools such as Corvil
or ExtraHop provide traffic visibility.

Network Automation: EOS natively supports Puppet, Chef, CFEngine and Ansible, which enables network configuration in the
same manner as servers and storage within data center environments. In addition, EOS supports tools that greatly reduce network
operational costs. For example Zero Touch Provisioning (ZTP) automates the provisioning of network infrastructure and speeds time
to production for new services while eliminating the risk of human error and Zero Touch Replacement (ZTR) provides automated
provisioning of replacement switches, significantly reducing mean-time-to-replacement of a failed switch.

Network Virtualization: Virtualized environments such as NSX from VMware, System Center from Microsoft, KVM with OpenStack, as
well as bare-metal physical servers can all be interconnected through EOS. Overlay technologies such as VXLAN allow for a larger
scale, multi-tenant network in a mixed environment containing virtual and physical network infrastructure.

vEOS: Arista vEOS extends the EOS software platform running on the physical switches to a virtual machine-based offering. It
enables network design and validation, provides an easy way to develop and test extensions and applications on EOS and is an
effective training tool to increase familiarity with the features and tools that EOS has to offer.

arista.comarista.comarista.com

Santa Clara—Corporate Headquarters
5453 Great America Parkway,
Santa Clara, CA 95054

Phone: +1-408-547-5500
Fax: +1-408-538-8920
Email: info@arista.com

White Paper

Copyright © 2016 Arista Networks, Inc. All rights reserved. CloudVision, and EOS are registered trademarks and Arista Networks
is a trademark of Arista Networks, Inc. All other company names are trademarks of their respective holders. Information in this
document is subject to change without notice. Certain features may not yet be available. Arista Networks, Inc. assumes no
responsibility for any errors that may appear in this document. 01/15

Ireland—International Headquarters
3130 Atlantic Avenue
Westpark Business Campus
Shannon, Co. Clare
Ireland

Vancouver—R&D Office
9200 Glenlyon Pkwy, Unit 300
Burnaby, British Columbia
Canada V5J 5J8

San Francisco—R&D and Sales Office
1390 Market Street, Suite 800
San Francisco, CA 94102

India—R&D Office
Global Tech Park, Tower A & B, 11th Floor
Marathahalli Outer Ring Road
Devarabeesanahalli Village, Varthur Hobli
Bangalore, India 560103

Singapore—APAC Administrative Office
9 Temasek Boulevard
#29-01, Suntec Tower Two
Singapore 038989

Nashua—R&D Office
10 Tara Boulevard
Nashua, NH 03062

Conclusion
Arista’s EOS Software is the key foundation for deploying Cloud Data Centers. It is
the most advanced, resilient and programmable operating system and provides
industry leading network services, operational innovations and integration
capabilities.

For more information, visit: http://www.aristanetworks.com/en/products/eos

References
Linux as a Switch Operating System: Five Lessons Learned

https://eos.aristanetworks.com/2013/11/linux-as-a-switch-operating-system-five-
lessons-learned/

