
DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

DZONE.COM/GUIDES DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

THE DZONE GUIDE TO

Performance
Optimization & Monitoring

VOLUME III

RESEARCH PARTNER SPOTLIGHT

DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

DZONE.COM/GUIDES DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

 2

BY MATT WERNER
CONTENT AND COMMUNIT Y MANAGER, DZONE

Back in the 1990s, it could take minutes to load a
web page, while today it typically takes seconds.
However, as Google discovered in 2012, even 400
milliseconds can be considered to be “too slow” for
users, which may cause them to bounce or complain
to the owners of the site they’re trying to visit.
Imagine how they might react when something
in the application code stops them from instantly
accessing the information they need by a factor of
seconds or even minutes. As developers are being
expected to optimize their applications for security
and rapid changes through DevOps methodologies,
they are also starting to become more involved in
application performance optimization. To monitor
the state of the industry regarding performance
optimization, DZone surveyed 471 tech professionals
to discover how they prepared for performance

issues and how they dealt with them.

LOCKING EVERYTHING DOWN
DATA 46% of respondents build performance optimization
into the development process. Of those, 30% were likely to find
frequent code issues compared to 38% of developers who build
functionality first, then optimize for performance. Those who
bake performance into the SDLC solve performance issues 35
hours faster on average than those who do not.

IMPLICATIONS Incorporating performance optimization from
the start of a project can drastically reduce headaches in the
long term, and can make it easier to get users back on track
as soon as possible. In addition to being faster, there are likely
to be fewer failures in the first place, leading to saved cost
in development time, so more resources can be allocated to
different projects rather than stuck doing maintenance.

RECOMMENDATIONS Developers need to start learning about
the best ways to optimize their applications from day one.
The extra time it may take to do this right from the start will
be worth it in saved time and costs from fixing problems
down the road. Leadership teams should also be educated
by performance optimization experts and project managers
on the long-term benefits of incorporating performance
optimization early. For an interesting case study on how Oren

Eini and his team optimized the RavenDB database, check
page 16.

DESIGNING FOR PARALLEL EXECUTION HASN’T
CAUGHT ON YET
DATA The number of DZone users who design programs for
parallel execution increased 1% over last year’s survey to 44%.
Of the parallel execution design techniques, load balancing
was the most used at 68%. Multithreading is the most popular
parallel programming model at 72%.

IMPLICATIONS Load balancing continues to be an important
part of running applications in production. Parallel execution
was also seen as crucial for embedded apps and high-risk
software by 54% of survey respondents, since failure of these
applications can lead to the loss of life. The small amount of
growth between last year and this year seems to indicate that
redesigning existing applications or spending time to design
new applications for parallel execution seems to be less of a
priority for apps where it is not seen as a crucial feature.

RECOMMENDATIONS Development and operations teams need

to invest more into load balancing in order to reduce the strain

on your servers as traffic comes in. Fewer constraints on your

resources means you should encounter fewer performance

problems related to load and traffic. For high-risk or business-

critical software, consider adopting parallel execution to

improve speed when it absolutely counts. Developers working

on applications outside of these fields should consider these

techniques and models. Not only will it be useful experience, but

it also potentially pay off in application speeds and happy users.

TOOLING MATTERS
DATA 64% of respondents reported that they use between 1
and 4 performance monitoring tools. The three most popular
tools are Nagios (33%), LogStash (27%), and AWS CloudWatch
(21%). Those who use monitoring tools are 7% less likely to
discover problems through communication with users and
support tickets than those who do not use them, and were 12%
less likely to accidentally encounter performance issues.

IMPLICATIONS LogStash and CloudWatch have both made
large jumps in popularity since 2016 (5% and 6%, respectively),
suggesting that more developers and organizations are
adopting monitoring tools. These tools have proven their
usefulness by helping to pinpoint performance issues before
anyone notices or encounters it while using the application.

RECOMMENDATIONS The only thing better than quickly fixing
a performance issue for a user is to fix it before the user can
find it. Monitoring tools are becoming critically important
for maintaining applications. In addition to monitoring tools,
we found that those who use multiple methods or tools like
application logs to find the root cause of performance problems
will find the root cause of an issue faster than those who don’t
use monitoring tools, or only use one tool or method. For more
detail, consult the Key Research Findings on the following page
or Denis Goodwin’s article on API monitoring on page 8.

Executive
Summary

http://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html?_r=0

DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

DZONE.COM/GUIDES DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

 3

WHAT TOOLS DOES YOUR TEAM COMMONLY USE TO FIND
ROOT CAUSE FOR APPLICATION PERFORMANCE PROBLEMS?

48

61

89

69

50
44

60

36

21

14 4

20

40

LANGUAGE'S
BUILT-IN TOOLING

60

80

100

PROFILERS APPLICATION
LOGS

DATABASE
LOGS

OS COMMAND
LINE TOOLING

MEMORY DUMP
ANALYZERS

THREAD DUMP
ANALYZERS DEBUGGERS

APM TOOLS ASKED FOR
EXTERNAL HELP

OTHER

BY G . RYAN SPAIN
PRODUCTION COORDINATOR, DZONE

471 respondents completed our 2017 Performance
and Monitoring Survey. The demographics of the

survey respondents include:

• 24% of respondents work at organizations with at

least 10,000 employees; 18% work at organizations

between 1,000 and 10,000; and 19% work at

organizations between 100 and 1,000.

• 37% of respondents work at organizations in

Europe, and 29% work at organizations in the US.

• Respondents had 15 years of experience as an IT

professional on average; 29% had 20 years or more

of experience.

• 30% of respondents identify as developers or

engineers; 21% as developer team leads; and 20%

as software architects.

• 83% of respondents work at organizations that

use Java, and 79% work at organizations using

JavaScript (45% only using client-side, 3% only

using server-side, and 31% using both).

STARTING OFF
54% of this year’s survey respondents said they worry
about application performance only after they have
built application functionality, a response similar
to the results of DZone’s 2016 Performance and
Monitoring survey. However, the frequency with which
respondents claimed to experience certain application
performance issues was positively impacted by building
performance into the application first. For example, the
most frequent area for performance issues in this year’s
survey was application code, with 35% of respondents
saying they have frequent issues with this part of
their technology stack. On average, respondents who
said they build performance in from the beginning
of their application were 30% likely to find frequent
performance issues in their application code, as
opposed to 38% of respondents who worry about
performance after functionality. Likewise, those who
said they generally considered application performance
from the beginning were able to solve performance
issues 35 hours faster, on average, than those who did
not (187 hours compared to 222). Of course, focusing too
much on performance from the outset of a project can
lead to unnecessarily lengthy design and development
times, but having an idea of how performance will fit
into an application from the start can save headaches
later on in the SDLC.

WHEN WAS THE LAST TIME YOU HAD TO SOLVE A
PERFORMANCE PROBLEM IN YOUR SOFTWARE?

Key
Research
Findings

28%

14%

13%

16%

13%

7%
5%

3%

THIS WEEK

IN THE LAST TWO WEEKS

THIS MONTH

IN THE LAST 3 MONTHS

IN THE LAST 5 MONTHS

IN THE PAST YEAR

OVER A YEAR AGO

NEVER

DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

DZONE.COM/GUIDES DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

 4

KEEPING AN EYE OUT
The majority of respondents (64%) said they use
between 1 and 4 performance monitoring tools. The
most popular monitoring tools were Nagios, used by
33% of respondents’ organizations, and LogStash, used
by 27%. Both LogStash and Amazon’s CloudWatch saw
significant growth from last year’s results, with LogStash
growing 5% and CloudWatch growing 6% to 21%, making
it this year’s third most popular performance monitoring
tool. Increased usage of monitoring tools decreased the
average estimated amount of discovering performance
issues through user support emails/social media or
through “dumb luck;” respondents whose organizations
use 3 or 4 monitoring tools were 7% less likely to find
out about performance problems from users than those
who used none (17% vs. 24%), and were 12% less likely to
accidentally stumble upon performance issues through
dumb luck (11% vs. 23%). The most popular types of
monitoring were real user monitoring (34%) and business
transaction monitoring (26%).

WHAT’S THE PROBLEM?
Much like last year, finding the root cause of an
issue was found to be the most time-consuming
part of fixing performance-related problems. 52% of
respondents ranked this as the most time consuming,
followed by 25% of respondents who said collecting

and interpreting various metrics took the most time.
Respondents said they use a number of different tools
in order to search for the root cause of performance
issues. The most popular of these methods included
application logs (89%), database logs (69%), profilers
(61%), and debuggers (60%). Individually, none of
these tools had an impact on how time-consuming
respondents found root cause discovery; however,
respondents using more of these tools together were
increasingly less likely to find root cause discovery
time consuming until peaking at 6 tools (because of a
sample size of less than 1%, responses showing 0 tools
used were not considered in this analysis).

SPLITTING THE LOAD
The usage of parallel execution in application design has
not taken off much since last year. 44% of respondents
this year said they regularly design programs for parallel
execution, only 1% higher than last year. The tools
and methods for parallel design hasn’t changed much
either; like last year, the ExecutorService framework in
Java is the most frequently used framework/API among
respondents, with 50% of those who design for parallel
execution regularly using this framework often. Also,
load balancing is again the most popularly used parallel
algorithm design technique used, with 68% of parallel
execution designers using this often. And multithreading
is at the top of the list for parallel programming
models, with 72% of this subset of respondents using
multithreading often. The choice to design for parallel
execution in an application can be affected by multiple
factors. For instance, the type of application being
designed may increase the need for parallel execution;
respondents who said they build embedded services
or high-risk software (i.e. software in which failure
could lead to significant financial loss or loss of life)
were much more likely to regularly design for parallel
execution, with over half of these respondents (54%
each) answering this question positively.

HOW DO YOU PRIORITIZE PERFORMANCE IN YOUR
APPLICATION DEVELOPMENT PROCESS?

WHICH OF THE FOLLOWING PERFORMANCE TESTS AND/OR
MONITORING TYPES DOES YOUR ORGANIZATION USE?

BUILD PERFORMANCE
INTO THE APPLICATION
FROM THE START

BUILD APPLICATION
FUNCTIONALITY FIRST,
THEN WORRY ABOUT
PERFORMANCE

46%54%WEBSITE SPEED
TESTS

REAL USER
MONITORING

SYNTHETIC
MONITORING

STRESS
TESTS

BOTTOM UP
MONITORING

APPLICATION
COMPONENT
DEEP DIVE
MONITORING

LOAD TESTS SMOKE TESTS LOG MGMT./
ANALYSIS

TRANSACTION
PATH SNAPSHOTS

BUSINESS TRANS.
MONITORING

ADDM

OTHER
NONE SPECIFIC
TO PERFORMANCE

10

20

30

40

50

60

70

53

34

15

55

67

42

65

17

12

26

8 6

13

1

DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

DZONE.COM/GUIDES DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

 5

Metric or
Log Analytics
Checklist

BY STELA UDOVICIC
SR. DIRECTOR, PRODUCT MARKETING, WAVEFRONT

To meet critical SLAs and maintain reliability, modern digital enterprises

running applications in the cloud must measure the performance of their

revenue generated essential services, distributed applications, and

infrastructures. For developers, DevOps and TechOps engineers, it can be

confusing to know when to use metrics or log monitoring to isolate code

performance anomalies, proactively monitor and baseline their scaled out,

dynamic and distributed applications.

Metrics describe numeric measurements in time. The metric format includes the

measured metric name, the metric data value, the timestamp, the metric source,

and an optional tag. Metrics convey small information bits, much lighter than logs.

Logs, unlike metrics, contain textual information about an event that occurred.

Logs are meant to convey detailed information about the application, user, or

system activity. The primary purpose of logs is troubleshooting a specific issue

after the fact, e.g., code error, exception, security issue, or other. This checklist

will help you select the right approach for your environment.

Use metric analytics if you:
�� Need to continuously measure and get split-second insights

from your cloud application code performance, business

KPIs, and infrastructure metrics at high scale. The almost

instant insights are essential for digital businesses generating

revenue from customer-facing applications.

�� Are concerned with CPU, memory, or storage consumption, in

particular, when you are developing and monitoring complex

distributed applications requiring benchmarking and storing

large code performance data sets. As numeric measurments,

metrics can be highly compressed.

�� Run many microservices and containers.

�� Use messaging pipelines for your application monitoring data

including Kafka or others.

�� Work for an organization that has many developers that need

to collaborate and share metrics analysis and dashboards

(such as self-service analytics for

engineering teams).

�� Need to apply complex processing on your code performance

measurments or business KPI data such as using aggregates,

histograms (distributions), and other mathematical

transformations.

Use metric and log analytics if you:
�� Need to process both continuous metric data events and logs.

Metrics analytics helps you get the first-pane of glass across
the entire application stack. Then use log monitoring to deep-
dive into a specific issue to investigate the root-cause after an
issue happened.

�� Need proactive query-driven smart alerting.

�� Implementing DevOps principles and continuous delivery of
your code.

�� Need to troubleshoot and deep dive into a particular system
such as storage or network, after an issue occurred that
generated a log.

Use log analytics if you:
�� Need to analyze only unstructured text-based data from your

applications and infrastructure.

�� Can afford application performance data under-sampling and
coarser monitoring.

�� Don’t need to develop and don’t need to run highly distributed
applications that require high scalability.

�� Are developing monolithic applications that typically do not
require frequent code updates requiring continuous monitoring.

�� Are not concerned with slower processing of your application
performance data, such as in batch-like processing.

DZONE.COM/GUIDES DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

 6

OUTAGES EXPOSE CRITICAL VULNERABILITIES
It’s a time for reflection in the tech community, after huge
numbers of popular and critical applications were rocked by
the recent AWS S3 and Dyn DNS outages.

What can we learn from them? It’s true that widely
impactful outages target specific vulnerabilities—like the
lack of redundancy and overdependence on AWS S3 and
Dyn—but these outages also expose and publicize those
same vulnerabilities.

Learn from each major outage (even if you weren’t affected)
and adjust your network architecture and monitoring
strategies accordingly. Dealing with outages then becomes
a process of incremental fortification. Your networks will be
strengthened by each outage, and history won’t repeat itself.

GET THE VISIBILITY TO LOCATE FAILURE POINTS
Having a full-stack network and application monitoring
system in place for both internal and external services
is key to learning the right lessons. To detect outages,
diagnose root cause and quickly resolve issues, find a
monitoring solution with:

•	 End-to-end visibility, from source all the way to
destination

•	 Visibility across the network and application stacks,
including web, network, routing and device layers, so
you can correlate data and understand root cause

•	 The ability to share data with providers, team members
and affected users

With the right solutions in place, you’ll have a bird’s-eye view
of critical applications and the networks that deliver them.
You’ll be able to rapidly deduce the root cause of issues, keep
your providers accountable with actionable data, and be
equipped with the knowledge to reinforce your environment
against future events.

WRITTEN BY YOUNG XU
PRODUCT MARKETING ANALYST, THOUSANDEYES

ThousandEyes delivers powerful insights for the Internet-centric enterprise by
correlating application performance to network behavior.

BLOG blog.thousandeyes.comWEBSITE www.thousandeyes.com TWITTER @thousandeyes

Network & Application Monitoring By ThousandEyes

CASE STUDY
Zendesk is a customer service platform that around 60,000

enterprises rely on to foster better customer relationships.

As a SaaS service delivered over the Internet, the perceived

performance of Zendesk is heavily dependent on application

performance and network quality. “We would encounter

situations where our application was working well but would

still hear customers report slow performance,” says Steve

Loyd, Vice President of Engineering Operations at Zendesk.

Zendesk uses ThousandEyes to get deep insight into

application delivery that equips the operations team to react

quickly to problems. Zendesk now uses ThousandEyes metrics

as the ground truth to measure and share SLA metrics with

their customers.

STRENGTHS

NOTABLE CUSTOMERS

• SaaS-based solution that provides an unified view
of performance from user to application

• Smart, lightweight, active monitoring probes
deployed across the Internet and your network

• Pinpoint network dependencies and perform root
cause analysis with intuitive visualizations

• Customizable alerts, integrations and API
transform insights into actions

• Interactive snapshots shared across internal
and external teams to promote collaborative
problem solving

• Evernote

• PayPal

• Craigslist

• Twitter

• RichRelevance

• Avera Health

• Shutterfly

• Wayfair

• Lyft

CATEGORY
Network & Application
Performance

NEW RELEASES
Bi-weekly

OPEN SOURCE
No

SPONSORED OP IN ION

How Should We
Learn from Large-
Scale Outages?

https://www.thousandeyes.com/dzone?utm_source=Dzone&utm_medium=Content&utm_campaign=NA_FY18_All_All_DzoneAd_DzoneAdTextlink
https://blog.thousandeyes.com/
https://www.thousandeyes.com/
http://www-03.ibm.com/software/products/en/api-connect
http://www.twitter.com/thousandeyes

https://www.thousandeyes.com/dzone?utm_source=Dzone&utm_medium=Content&utm_campaign=NA_FY18_All_All_DzoneAd_DzoneAdTextlink

DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

DZONE.COM/GUIDES DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

 8

It’s been a nerve-wracking few months for teams

managing cloud applications. In October 2016,

a DDoS impaired Dyn’s DNS services for hours,

rendering unavailable myriad sites and services

across the Internet. And in an unrelated, but

similarly impactful event, the outage of AWS S3

at the end of February 2017 caused widespread

and unpredictable collateral damage. With more

applications leveraging more services hosted

in just a few infrastructure environments, how

can we make sense of application dependencies?

How can we adopt a monitoring strategy that

clearly accounts for the risks of improbable but

hugely catastrophic service disruptions?

We’ll dig into how you can identify and manage cloud

dependencies by:

•• Understanding underlying cloud architectures and

failure scenarios

•• Getting a handle on the API connections in your app

and in customer interactions

•• Developing a comprehensive monitoring strategy

based on these requirements

MAKING SENSE OF IAAS ARCHITECTURES
Public cloud environments are a popular and powerful way to

gain access to advanced services that would be costly to build

or maintain on your own. But these services, from firewalls

to DDoS mitigation to globe-spanning databases to data

streaming platforms, are themselves composed of many other

services. Like a digital matryoshka doll, it can be hard to know

just how many layers and dependencies are bound up inside.

In the case of the AWS S3 outage, many operations teams

were surprised at how many different AWS offerings failed.

They had not appreciated, and AWS had not communicated,

just how interdependent various services were.

In your own data center, the failure of your entire file storage

system would have a dramatic impact. In the cloud, it is the

same story. The oldest services are building blocks from

which other services are built (as represented in the AWS

logo), and are foundational and critical to almost all other

services. Basic compute (AWS EC2), storage (AWS S3) and

networking (underpinning it all) are critical services that you

should be monitoring and evaluating for failure scenarios.

The same goes for Microsoft Azure (VMs, Blob Storage) and

Google Cloud (Compute Engine, Cloud Storage). If you use

cloud services that depend on these foundational elements,

make sure they are part of your monitoring strategy.

Developing for the cloud also requires an understanding

of failure isolation. AWS is built around the concept of

regions, with previous outages typically corresponding

to a single region. Unfortunately, many developers don’t

invest (sometimes wisely, sometimes naively) in cross-

region failover strategies. So when US-East-1, the first and

largest of the AWS regions has an issue, the impact is

unmistakable. Some services, like Google Spanner, have

different isolation mechanisms that need to be evaluated.

Understanding
and Monitoring
Dependencies in
Cloud Applications

Multiple regions can be used to
comprise a single offering, multiple
services are combined to provide
another cloud product, or both. There
are complex dependencies built into
almost every cloud service on the
market today.

Cloud-based services can be a
cost-effective alternative to building
your own, but each provider
builds them differently. Have a
monitoring strategy to understand
the dependencies and foundational
structures of these services.

APIs tie together cloud-based services
and applications, but when APIs fail,
so can everything else that relies on
them. Continually test the performance
of APIs and their connections for
operational awareness.

01

02

03

Q U I C K V I E W

BY NICK KEPHART
SR. DIRECTOR OF PRODUCT MARKETING, THOUSANDEYES

https://aws.amazon.com/message/41926/
https://aws.amazon.com/shield/
https://cloud.google.com/spanner/

DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

DZONE.COM/GUIDES DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

 9

When it comes to architecture planning, performance

monitoring and optimization, you’ll want to monitor each

potential failure domain. So if you are using cloud services

in 4 different regions, make sure that you are collecting

metrics on each.

IDENTIFYING API USAGE IN APPLICATIONS
Your applications depend on the specialized functionality

of third-party applications, typically accessed via APIs.

Don’t think you rely on APIs for critical capabilities? Think

again. APIs are very common in modern applications,

hiding in plain view a complex set of dependencies. Some

of these external services are important for just small

portions of functionality. But many impact customer

experience and revenue generation in fundamental ways.

What kind of APIs should you be monitoring? The specific

APIs will be unique to your application, but some

examples include:

•• User authentication is accomplished with single sign-

on APIs and services to detect fraud or abuse.

•• Pricing and merchandising require the complex

integration of many back-end applications to show an

accurate price to a customer.

•• Supply chain and logistics APIs ensure shipping is

fulfilled.

•• Payment gateways and billing systems are necessary

to transact with your customers.

•• Advertising is the lifeblood of many media sites and

relies on APIs to display targeted products, images,

descriptions, and reviews in real time.

•• Customer chat, phone and CRM systems use APIs to

seamlessly integrate with sites, and typically are the

difference between successfully communicating with

your users and being dead in the water.

There are myriad APIs that make up your overall

customer experience. Getting a handle on performance

dependencies requires a clear appreciation for the APIs

used by your application. You enumerate your APIs in

various ways: observing domains of objects on web pages,

looking at connection logs from your application servers

and using documentation (well hopefully it exists!) of

embedded services.

Monitoring External Services, Infrastructure and APIs

Once you’ve figured out what to monitor, the next step to

operational awareness is collecting data. There are several

key elements you’ll want as part of your monitoring toolkit:

1. Log errors of failed API connections and requests.

Track trends over time to understand services that

fail under your application load.

2. Actively monitor API servers and infrastructure

services. Regularly test the reachability, response

time and response codes of these services with

preconfigured tests. Don’t know what targets to test?

Your cloud provider typically has canary servers or

endpoints (here is the list for AWS) they can point

you to.

Taken together, these two approaches will give you an

understanding of baseline performance and specific issues

as they occur. As a bonus, tying both of these methods

together with a correlation engine such as Splunk can be

an effective way to make sense of seemingly disparate

events that are actually all related.

FOUR STEPS TO TACKLING DEPENDENCIES
Cloud-based applications, and the business models

that they support, rely on an increasingly diverse set

of underlying services, tied together through APIs. The

availability and efficacy of APIs and infrastructure services

has, therefore, become a key element in monitoring and

optimizing cloud applications.

As you are building out your next cloud application or

rethinking ways to meet your SLAs, follow these four steps:

1. Map key cloud infrastructure and application APIs.

It can be a monster task but you can’t optimize or

mitigate services you don’t know about.

2. Test each of the critical service dependencies with a

combination of logging and active monitoring. Logs

will give you forensic evidence while active monitoring

will provide a heads up to impending trouble.

3. Validate functionality and performance with

event correlation, alerting and baselining. With

interdependent services, you may not know likely

failure scenarios until you correlate your data.

4. Optimize performance over the long run to influence

vendor or architectural decisions. From choosing

vendors to investing in redundancy, it all starts with

having clear insights from your monitoring data.

The next time a major cloud outage or service disruption hits,

you’ll be well aware of what is wrong, and with the proper

planning, well positioned to ride out the storm.

NICK KEPHART leads Product Marketing at
ThousandEyes, which develops Network Intelligence software,
where he reports on Internet health and digs into the causes
of outages that impact important online services. Prior to
ThousandEyes, Nick worked to promote new approaches to cloud
application architectures and automation while at cloud management
firm RightScale.

http://docs.aws.amazon.com/general/latest/gr/rande.html#ec2_region

APPLICATION CODE

BROKEN
BONES

WORKLOAD

MEMORY

NETWORK

COMMON
COLD

Application performance issues are a lot like illnesses. There are thousands of possible culprits, and they can range from a mild

annoyance to you and those around you to potentially fatal. However, like sicknesses, you can take preventative measures to minimize

the occurrence and seriousness of performance problems. We surveyed 476 members of the DZone audience to learn about the most

common bugs that bring them down, how di�cult they are to overcome, and how proactive they are in preventing them.

COPYRIGHT DZONE.COM 2017

DATABASE

STREP
THROAT

THE FLU

MIGRAINES

 Those using
 their language’s
built-in tooling and thread
dump analyzers were 4%
less likely to find such issues
to be challenging than
those who did not, while
developers using debuggers
were 5% less likely.

36% of respondents
encountered frequent

performance issues with
their code, while 47%

had some issues.

 Those who build
 performance into

their applications
throughout the SDLC are
5% more likely to have no
database issues than those
who build application
functionality first and worry
about performance later.

Frequent database
issues plagued 24% of
survey respondents.

 Developers
 using APM

tools were 5% more
likely to solve workload
issues easily compared
to those who do not.

16% of respondents
encountered frequent
workload issues, with

12% finding such issues
to be challenging.

 Those who
 build perf-

ormance into their app-
lications from the start
see an 8% decrease in
frequent memory issues
compared to those who
do not.

15% of respondents
were having problems

with application
memory.

 Those who
 build perf-

ormance into their
applications from the
start of development see
a 5% decrease in frequent
network issues compared
to those who worry about
performance later.

Frequent network issues
affected 14% of survey
respondents, with 10%

finding such problems to be
challenging.

DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

DZONE.COM/GUIDES DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

11

As the industry is changing with many modern

trends, performance testing should change

too. A stereotypical, last-moment performance

validation in a test lab using a record-playback

load testing tool is no longer enough.

CLOUD
Cloud practically eliminated the lack of appropriate hardware

as a reason for not doing load testing while also significantly

decreasing the cost of large-scale tests. Cloud and cloud

services significantly increased a number of options to

configure the system under test and load generators. There are

some advantages and disadvantage of each option. Depending

on the specific goals and the systems to test, one deployment

model may be preferred over another.

For example, to see the effect of a performance improvement

(performance optimization), using an isolated lab environment

may be a better option for detecting even small variations

introduced by a change. For load testing the whole production

environment end-to-end to make ensure the system will

handle the load without any major issue, testing from the

cloud or a service may be more appropriate. To create a

production-like test environment without going bankrupt,

moving everything to the cloud for periodical performance

testing may be your best solution.

When conducting comprehensive performance testing, you’ll

probably need to combine several approaches. For example,

you might use lab testing for performance optimization to get

reproducible results and distributed, realistic outside testing

to check real-life issues you can’t simulate in the lab.

AGILE
Agile development eliminates the primary problem with

traditional development: you need to have a working system

before you may test it. Now, with agile development, we’ve had a

major “shift left”, allowing us to start testing early.

Theoretically, it should be rather straightforward—every iteration

you have a working system and know exactly where you stand

with the system’s performance. From the agile development side,

the problem is that, unfortunately, it doesn’t always work this

way in practice. So, such notions as “hardening iterations” and

“technical debt” get introduced. From the performance testing side,

the problem is that if we need to test the product each iteration or

build, the volume of work skyrockets.

Recommended remedies usually involve automation and

making performance everyone’s job. Automation here means

not only using tools (in performance testing, we almost always

use tools), but automating the whole process including setting

up the environment, running tests, and reporting/analyzing

results. Historically, performance test automation was almost

non-existent as it’s much more difficult than functional testing

automation, for example. Setups are more complicated, results

are complex (not just pass/fail) and not easily comparable, and

changing interfaces is a major challenge—especially when

recording is used to create scripts.

While automation will take a significant role in the future, it

only addresses one side of the challenge. Another side of the

agile challenge is usually left unmentioned. The blessing of

agile development, early testing, requires another mindset

and another set of skills and tools. Performance testing of new

systems is agile and exploratory in itself. Automation, together

with further involvement of development, offloads performance

engineers from routine tasks. But, testing early—the biggest

Reinventing
Performance
Testing

Cloud practically eliminated the
lack of appropriate hardware as a
reason for not doing load testing
while also significantly decreasing
the cost of large-scale tests.

With Agile development we’ve
had a major “shift left” allowing
us to start testing early.

In Agile development,
performance testing should be
interwoven throughout the SDLC,
not an independent step.

Dynamic architectures provide
new challenges for performance
testing—more sophisticated tools
may be needed.

01

02

03

04

Q U I C K V I E W

BY ALEX PODELKO
CONSULTING MEMBER OF TECHNICAL STAFF, ORACLE

DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

DZONE.COM/GUIDES DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

12

benefit being that it identifies problems early when the cost of

fixing them is low—does require research and analysis; it is not a

routine activity and can’t be easily formalized.

CONTINUOUS INTEGRATION
Performance testing shouldn’t just be an independent step
of the software development life-cycle where testers get the
system shortly before release. In agile development/DevOps
environments, it should be interwoven with the whole
development process. There are no easy answers here to fit
every situation. While agile development/DevOps is becoming
more and more mainstream, their integration with performance
testing is just making its first steps.

What makes agile projects really different is the need to run
a large number of tests repeatedly, resulting in the need for
tools to support performance testing automation. The situation
started to change recently as agile support became the main
theme in load testing tools. Several tools recently announced
integration with Continuous Integration Servers (such as Jenkins
and Hudson). While initial integration may be minimal, it is
definitely an important step toward real automation support.

It doesn’t look like we’ll have standard solutions here, as
agile and DevOps approaches differ significantly and proper
integration of performance testing can’t be done without
considering such factors as development and deployment
processes, system, workload, and the ability to automate

gathering and the analysis of results.

NEW ARCHITECTURES
Cloud seriously impacts system architectures, having a lot of
performance-related consequences.

First, we have a shift to centrally managed systems. ‘Software as
a Service’ (SaaS) are basically centrally managed systems with
multiple tenants/instances.

Second, to get the full advantage of cloud, such cloud-specific
features as auto-scaling should be implemented. Auto-scaling
is often presented as a panacea for performance problems, but,
even if it is properly implemented, it just assigns a price tag for
performance. It will allocate resources automatically, but you
need to pay for them. Any performance improvement results in
immediate savings.

Another major trend involves using multiple third-party
components and services, which may be not easy to properly
incorporate into testing. The answer to this challenge is service
virtualization, which allows one to simulate real services during
testing without actual access.

Cloud and virtualization triggered the appearance of dynamic,
auto-scaling architectures, which significantly impact collecting
and analyzing feedback. With dynamic architectures, we
have a great challenge ahead of us: to discover configuration
automatically, collect all necessary information, and then
properly map the collected information and results to a changing
configuration in a way that highlights existing and potential
issues—and potentially, to make automatic adjustments to avoid
them. This would require very sophisticated algorithms and

sophisticated Application Performance Management systems.

NEW TECHNOLOGIES
New technologies may require other ways to generate load. Quite

often, the whole area of load testing is reduced to pre-production

testing using protocol-level recording/playback. Sometimes,

it even leads to conclusions like “performance testing hitting

the wall” just because load generation may be a challenge.

While protocol-level recording/playback was (and still is) the

mainstream approach to testing applications, it is definitely just

one type of load testing using only one type of load generation;

such equivalency is a serious conceptual mistake, dwarfing load

testing and undermining performance engineering in general.

Protocol-level recording/playback is the mainstream approach

to load testing: recording communication between two tiers

of the system and playing back the automatically created

script (usually, of course, after proper correlation and

parameterization). As far as no client-side activities are involved,

it allows the simulation of a large number of users. But, such a

tool can only be used if it supports the specific protocol used for

communication between two tiers of the system. If it doesn’t or it

is too complicated, other approaches can be used.

UI-level recording/playback has been available for a long

time, but it is much more viable now. New UI-level tools for

browsers, such as Selenium, have extended the possibilities

of the UI-level approach, allowing the running of multiple

browsers per machine (limiting scalability only to the resources

available to run browsers). Moreover, UI-less browsers, such as

HtmlUnit or PhantomJS, require significantly fewer resources

than real browsers.

Programming is another option when recording can’t be used at

all, or when it can, but with great difficulty. In such cases, API

calls from the script may be an option. Often, this is the only

option for component performance testing. Other variations

of this approach are web services scripting or the use of unit

testing scripts for load testing. And, of course, there is a need

to sequence and parameterize your API calls to represent a

meaningful workload. The script is created in whatever way

is appropriate and then either a test harness is created or a

load testing tool is used to execute scripts, coordinate their

executions, and report and analyze results.

SUMMARY
Performance testing should reinvent itself to become a flexible,

context-, and business-driven discipline. It is not that we just

need to find a new recipe; now, we need to be able to adjust on

the fly to every specific situation in order to remain relevant.

ALEX PODELKO has specialized in performance since 1997,
working as a performance engineer and architect for several companies.
Currently he is Consulting Member of Technical Staff at Oracle,
responsible for performance testing and optimization of Enterprise
Performance Management and Business Intelligence (a.k.a. Hyperion) products. Alex
periodically talks and writes about performance-related topics, advocating tearing
down silo walls between different groups of performance professionals. His collection
of performance-related links and documents (including his recent papers and
presentations) can be found at alexanderpodelko.com. He blogs at alexanderpodelko.
com/blog and can be found on Twitter as @apodelko. Alex currently serves as a
director for the Computer Measurement Group (CMG, cmg.org), an organization of
performance and capacity planning professionals.

http://alexanderpodelko.com
http://alexanderpodelko.com/blog
http://alexanderpodelko.com/blog
http://www.twitter.com/apodelko
http://cmg.org

DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

DZONE.COM/GUIDES DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

13

To gather insights on the state of performance
optimization and monitoring today, we spoke
to 12 executives from 11 companies that provide
performance optimization and monitoring
solutions for their clients Here’s who we spoke to:

JOSH GRAY, Chief Architect, Cedexis

JEFF BISHOP, General Manager, ConnectWise Control

BRYAN JENKS, CEO and Co-Founder, DropLit.io

DORU PARASCHIV, Co-Founder, IRON Sheep TECH

YOAV LANDMAN, Co-Founder and CTO, JFrog

JIM FREY, V.P. Strategic Alliances, Kentik

ERIC SIGLER, Head of DevOps, PagerDuty

NICK KEPHART, Senior Director Product Marketing, ThousandEyes

KUNAL AGARWAL, CEO, Unravel Data

LEN ROSENTHAL, CMO, Virtual Instruments

ALEX RYSENKO, Lead Software Engineer, Waverly Software

EUGENE ABRAMCHUK, Sr. Performance Engineer, Waverly Software

Here are the key findings from the subjects we covered:

 01 The keys to performance optimization and

monitoring are the design infrastructure and real-
time user monitoring (RUM) to ensure an optimal

end-user experience (UX) whether it’s videos, web

pages, or applications. The proliferation of new services,

requirements, and devices in diverse geographic

locations has made visibility into the entire network

critical. You need to be able to see where all of your data

is residing to understand how performance is, or is not,

being optimized.

 02 There’s a greater need for visibility, and there’s
a proliferation of tools coming online to provide

that visibility. However, no one has developed a

single solution to provide a complete view across a

diverse collection of infrastructures and application

architectures. Response times and page-load times

have continued to decrease with the adoption of

virtualization and microservices. We’re evolving from

performance monitoring to performance intelligence

with the addition of easy-to-understand, contextually

relevant, algorithmically-driven performance analytics.

However, it’s important to identify and focus on key

business metrics, or else you run the risk of being

overwhelmed with data.

 03 The most frequently mentioned performance and

monitoring tools used are AppDynamics, New Relic, and
DataDog. However, these were just three of more than

30 mentioned, with a trend towards more granular and

specialized offerings, and respondents mentioning just a

few solutions that came to mind besides their own.

 04 Real-world problems that are being solved with

performance optimization and monitoring are time to
market, optimization of UX, and reduction in time to

Executive Insights
Performance
Optimization and
Monitoring

Use real-time user monitoring to
provide visibility into the entire
pipeline to ensure an optimal
user experience with video,
applications, and web pages.

While there’s a proliferation of
tools providing visibility across
networks, architectures, and
devices, no one has developed
a single, holistic solution.

In the future, there will be a
single, holistic solution that
uses machine learning to
solve problems before they
even occur for an optimal user
experience.

01

02

03

Q U I C K V I E W

BY TOM SMITH
RESEARCH ANALYST, DZONE

http://www.cedexis.com/
https://www.connectwise.com/software/control
http://droplit.io/
http://www.ironsheep.tech/
http://www.jfrog.com/
http://www.kentik.com/
https://www.pagerduty.com/
https://www.thousandeyes.com/
http://www.unraveldata.com/
http://www.virtualinstruments.com/
http://www.waverlysoftware.com/
http://www.waverlysoftware.com/

DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

DZONE.COM/GUIDES DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

14

resolve issues through greater collaboration among

teams. While more tools are coming online, some

providers are enabling disparate tools to provide an

integrated view to the client, which results in greater

visibility into the entire pipeline and faster time to

problem resolution. This visibility is also enabling

clients to ensure service level agreements (SLAs) are

being met by third-party providers.

 05 Nonetheless, the most common issues continue
to be the need to improve visibility, ease of use,
performance, and knowledge of the impact that
code has on the UX. Incomplete visibility throughout
the pipeline prevents organizations from accurately
finding the source of latency in the network, the
application, or the endpoint. There continues to be
a lack of knowledgeable professionals that know
distributed computing and parallel processing. As such,
technical complexity of these tools must be reduced for
companies to get the most value from them. Vendors
should also improve the ease of use through analytics
so IT operations do less data interpretation and can
focus more on remediation. Understanding the product,
load, load tests, and performance graphs is critical.
Several developers do not understand the performance
impact of their code and they are not pre-optimizing
their code, which can lead to less readable code with
more complex bugs. Ensure that you talk to end users
in order to understand what they are experiencing and
what’s important to them. Do not assume you know

what they want.

 06 The biggest opportunities for improvement are the

automatic reaction to, and correction of, issues and
having more elegant, thoughtful design, and testing

resulting in an optimal UX. In the future, performance

and monitoring tools will automatically react to issues

and know the difference between mitigating and fixing

problems. They’ll be able to do this by collecting more

data and identifying a dynamic system to determine

what the problem may be before it affects the customer.

Data will be more manageable with automated

analysis. Application design will feature higher level

programming, better tools, and graceful degradation.

Just as data is used to solve problems, it can also be

used to change the way performance testing is done

and measured. All monitoring products will monitor

across the hybrid data center, including on-premise

and public cloud-deployed applications.

 07 The biggest concerns about performance and

monitoring today are the lack of collaboration,
identification of KPIs and how to measure them, and

expertise. Companies are not moving quickly enough to
share and integrate different viewpoints. Smaller teams
can implement more iterative solutions more quickly,
which allows them learn faster and observe how small
optimization differences can have massive hardware
implications. It’s important to identify and agree upon
KPIs for each business unit, and how they will be
measured. Premature optimization is a common pitfall
in software development. It’s common to see software
being developed without concern for consistency or use
cases, which dramatically affect the quality and speed
of the software.

 08 The skills needed by developers to optimize
application performance and monitoring are: 1)
understanding of the fundamentals; 2) understanding
the concept of benchmarking and improving; and 3)
staying creative. Have authoritative understanding
of the underlying IT infrastructure and the expertise
to keep it running in the face of constant change,
independent of vendors or location. Understand the
architecture of the system, how services talk to each
other, how the database is accessed, and how messages
are read by concurrent consumers. Keep a broad
perspective, an open mind, and an understanding of
the needs and wants of the end user. Don’t assume
the model you have in your mind is correct and know
you’re going to get it wrong. Get used to designing in
a way that makes it easy to make a few small changes
than having to rebuild the entire application. Set a
reliable benchmark for the performance goals that
are relevant to your business application and work to
improve on those goals as you get more information.

 09 An additional consideration made by a few
of our participants is the question of where
performance monitoring begins and ends versus
testing and validation. Once a problem is identified
and remediation proposed, there is a need to test
and validate that the change has completely fixed
the problem. What effect will advancements in
technologies such as AI, bots, BI, data analytics,
ElasticSearch, natural language search, and new open
source frameworks with standardized APIs have on
performance and monitoring?

Let us know if you agree with their perspective or have
answers to the questions they raised. We’d love to get
your feedback.

TOM SMITH is a Research Analyst at DZone who excels
at gathering insights from analytics—both quantitative and
qualitative—to drive business results. His passion is sharing
information of value to help people succeed. In his spare time, you
can find him either eating at Chipotle or working out at the gym.

DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

DZONE.COM/GUIDES DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

15

In the last 10 years, an incredible amount of

resources went into speeding up peak performance

of JavaScript engines. This was mostly driven by

peak performance benchmarks like SunSpider

and Octane, and shifted a lot of focus toward the

sophisticated optimizing compilers found in modern

JavaScript engines like Crankshaft in Chrome.

This drove JavaScript peak performance to incredible heights

in the last two years, but at the same time, we neglected

other aspects of performance like page load time, and we

noticed that it became ever more difficult for developers to

stay on the fine line of great performance. In addition to that,

despite all of these resources dedicated to performance, the

user experience on the web seemed to get worse over time—

especially page load time on low-end devices.

This was a strong indicator that our benchmarks were no

longer a reasonable proxy for the modern web, but rather

turned into a caricature of reality. Looking at Google’s Octane

benchmark we see that it spends over 70% of the overall

execution time running JavaScript code.

Comparing this to profiles we see during startup of some 25

top web pages, we see that those are nowhere near the 70%

JavaScript execution of Octane. They obviously spend a lot of

time in Blink doing layouting and rendering, but also spend a

significant amount of time in parsing and compiling JavaScript.

On average, the time spent in executing JavaScript is roughly

20%, but more than 40% of the time is spent in just parsing, IC

(inline cache) Miss and V8 C++ (the latter of which represent

the subsystems necessary to support the actual JavaScript

execution, and the slow paths for certain operations that

are not optimized in V8). Optimizing for Octane might not

provide a lot of benefit for the web. In fact, parsing and

compiling large chunks of JavaScript is one of the main

problems for startup of many web pages nowadays, and

Octane is a really bad proxy for that.

There’s another benchmark suite named Speedometer, that

was created by Apple in 2014, which shows a profile that is

closer to what actual web pages look like. The benchmark

consists of the popular TodoMVC application implemented in

various web frameworks (i.e. React, Ember, and AngularJS).

As shown in the profile, the Speedometer benchmark is

already a lot closer to what actual web page profiles look

Real World
Performance and the
Future of JavaScript
Benchmarking

Web workloads are changing,
performance metrics and
tooling need to be adapted
appropriately.

JavaScript engines are focusing
on broadening the fast path
beyond just peak scripting
performance.

Whenever possible, modern
JavaScript should be shipped
to the browser to avoid the
transpiler overhead.

Limiting the amount of
JavaScript proportionally to
what’s visible on the screen is a
good strategy.

01

02

03

04

Q U I C K V I E W

BY BENEDIKT MEURER
TECH LEAD OF THE JAVASCRIPT EXECUTION OPTIMIZATION TEAM, GOOGLE

http://browserbench.org/Speedometer/

DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

DZONE.COM/GUIDES DZONE’S GUIDE TO PERFORMANCE: OPTIMIZATION AND MONITORING, VOLUME III

1 6

like, yet it’s still not perfect - it doesn’t take into account

parse time for the score, and it creates 100 todos within a

few milliseconds, which is not how a user interacts with a

web page usually. V8’s strategy for measuring performance

improvements and identifying bottlenecks thus changed

from using mostly traditional JavaScript benchmark methods

toward using browser benchmarks like Speedometer and also

tracking real-world performance of web pages.

What’s interesting to developers in light of these findings is

that the traditional way of deciding whether to use a certain

language feature by putting it into some kind of benchmark

and running it locally or via some system like jsperf.com

might not be ideal for measuring real-world performance.

When following this route, it’s possible for the developer to

fall into the microbenchmark trap and observe mostly the raw

JavaScript execution speedup, without seeing the real overhead

cumulated by the other subsystems of the JavaScript engine

(i.e. parsing, inline caches, slow paths triggered by other parts

of the application, etc.) that negatively affect a web page’s

performance. At Chrome, we have been making a lot of the

tooling that supported our findings available to developers via

the Chrome Developer Tools.

You can now see parsing and compile buckets in the profiler.

And, over the last few years, we’ve introduced another

mechanism - called chrome://tracing - which allows you to

record traces that collect all kinds of events. For example,

you can analyze in detail how much time V8 spends in the

different parsing steps, and thereby understand whether it

might make sense to consider using a tool like optimize-js to

mitigate the overhead of pre-parsing when it’s not beneficial,

for example the function is executed immediately anyway.

Chrome Tracing provides you with a pretty detailed

understanding of what’s going on performance-wise by

offering a view into the less obvious places. V8 has a step-

by-step guide on how to use this. For most use cases

though, I’d recommend sticking to the Developer Tools,

because they offer a more familiar interface and don’t

expose an overwhelming amount of the Chrome / V8

internals. But for advanced developers, chrome://tracing

might be the swiss army knife that they were looking for.

Looking at the web today, we’ve discovered that it is

important to significantly reduce the amount of JavaScript

that is shipped to the browser, as we live in a world where

more and more users consume the web via mobile devices

that are a lot less powerful than a desktop computer and

might not even have 3G connectivity.

One key observation is that most web developers use

ECMAScript 2015 or later for their daily coding already, but

for backwards compatibility compile all their programs to

traditional ECMAScript 5 with so-called transpilers, like

Babel, for example. This can have unexpected impact on

the performance of your application because often the

transpilers are not tuned to generate high performance

code. Thus the final code that is shipped might be less

efficient than the original code. But there’s also the increase

in code size due to transpilers: The generated code is

usually 200-1000% the size of the original code, which

means the JavaScript engine has up to 10 times the work, in

parsing, compiling, and executing your code.

Since not all browsers support all new language features,

there’s a certain period of time where new features require

transpilation. But if you are building a web application today,

consider shipping as much of the original code as possible.

An Intranet application with dedicated clients inside the

company, all using some recent browser version, could as

well be written and shipped as ES2015 code.

A good rule of thumb currently, is to ship amounts of

JavaScript proportionally to what’s on the screen. Think

about code splitting from the beginning and design your

web application with progressive enhancement in mind

whenever possible. And independent of what kind of

application you are developing, try to be as declarative as

possible, using appropriate algorithms and data structures;

i.e. if you need a map, use a Map. If it turns out to be slow in

a certain browser, file a bug report. Focus optimization work

on bottlenecks identified via profiling.

BENEDIKT MEURER joined Google in 2013 to work on the V8

JavaScript VM that powers both Node.js and Chrome. He is the tech lead

of the JavaScript Execution Optimization team, focusing on the compiler

architecture and performance of new language features. He contributed to various open

source projects in the past, including OCaml, Xfce, and NetBSD. In his spare time, he’s a

father of two, enjoys hiking and biking.

http://jsperf.com/
https://github.com/nolanlawson/optimize-js
https://docs.google.com/presentation/d/1Lq2DD28CGa7bxawVH_2OcmyiTiBn74dvC6vn2essroY/edit#slide=id.g1a504e63c9_2_84
https://docs.google.com/presentation/d/1Lq2DD28CGa7bxawVH_2OcmyiTiBn74dvC6vn2essroY/edit#slide=id.g1a504e63c9_2_84

